Test Code NSE / NSE-M Neuron-Specific Enolase, Serum
Additional Codes
Software | Test Code |
---|---|
Label Text | NSE |
EPIC | LAB10111 |
Mayo Laboratories | NSE |
Reporting Name
Neuron Specific Enolase, SUseful For
A follow-up marker in patients with neuron-specific enolase-secreting tumors of any type
An auxiliary test in the diagnosis of small cell lung carcinoma
An auxiliary test in the diagnosis of carcinoids, islet cell tumors, and neuroblastomas
An auxiliary tool in the assessment of comatose patients
Performing Laboratory

Specimen Type
SerumSpecimen Required
Supplies: Sarstedt Aliquot Tube, 5 mL (T914)
Collection Container/Tube:
Preferred: Red top
Acceptable: Serum gel
Submission Container/Tube: Plastic vial
Specimen Volume: 0.5 mL
Collection Instructions:
1. Specimens should not be transported by tube system prior to centrifugation.
2. Centrifuge and aliquot serum into a plastic vial.
Specimen Minimum Volume
0.3 mL
Specimen Stability Information
Specimen Type | Temperature | Time |
---|---|---|
Serum | Refrigerated (preferred) | 7 days |
Ambient | 5 days |
Reference Values
≤15 ng/mL
Serum markers are not specific for malignancy, and values may vary by method.
Test Classification
This test was developed and its performance characteristics determined by Mayo Clinic in a manner consistent with CLIA requirements. It has not been cleared or approved by the US Food and Drug Administration.CPT Code Information
83520
LOINC Code Information
Test ID | Test Order Name | Order LOINC Value |
---|---|---|
NSE | Neuron Specific Enolase, S | 15060-7 |
Result ID | Test Result Name | Result LOINC Value |
---|---|---|
NSE | Neuron Specific Enolase, S | 15060-7 |
Clinical Information
Enolase is a glycolytic enzyme that catalyzes the conversion of 2-phosphoglycerate to phosphoenolpyruvate. Enolase exists in the form of several tissue-specific isoenzymes, consisting of homo or heterodimers of 3 different monomer-isoforms (alpha, beta, and gamma). Neuron-specific enolase (NSE) is a 78 kDa gamma-homodimer and represents the dominant enolase-isoenzyme found in neuronal and neuroendocrine tissues. Its levels in other tissues, except erythrocytes, are negligible. The biological half-life of NSE in body fluids is approximately 24 hours.
Due to this organ-specificity, concentrations of NSE in serum or, more commonly, cerebrospinal fluid (CSF) are often elevated in diseases that result in relative rapid (hours/days to weeks rather than months to years) neuronal destruction. Measurement of NSE in serum or CSF can therefore assist in the differential diagnosis of a variety of neuron-destructive and neurodegenerative disorders. The most common application is in the differential diagnosis of dementias, where elevated CSF concentrations support the diagnosis of rapidly progressive dementias, such as Creutzfeldt-Jacob Disease. NSE may also have utility as a prognostic marker in neuronal injury. For example, there is increasing evidence that elevated serum NSE levels correlate with a poor outcome in coma, particularly when caused by hypoxic insult.
Neuron-specific enolase is frequently overexpressed by neural crest-derived tumors. Up to 70% of patients with small cell lung carcinoma (SCLC) have elevated serum NSE concentrations at diagnosis. Approximately 90% of patients with advanced SCLC will have serum levels above the healthy reference range. Other neuroendocrine tumors with frequent expression of NSE include carcinoids (up to 66% of cases), islet cell tumors (typically <40% of cases), and neuroblastoma (exact frequency of NSE expression unknown). NSE levels in NSE-secreting neoplasms correlate with tumor mass and tumor metabolic activity. High levels have, therefore, some negative prognostic value. Falling or rising levels are often correlated with tumor shrinkage or recurrence, respectively.
Cautions
All neuron-specific enolase (NSE) test results must be considered in the clinical context, and interferences or artifactual elevations should be suspected if the clinical NSE test results are at odds with the clinical picture or other tests.
Hemolysis can lead to significant artifactual NSE elevations since erythrocytes contain NSE.
Hemoglobin concentrations as low as 20 mg/dL were found to have an adverse effect on NSE testing.
Proton pump inhibitor treatment, hemolytic anemia, hepatic failure, and kidney failure can also result in artifactual NSE elevations.
Other false-positive results depend on the treating context. When performing NSE testing for tumor diagnosis or follow-up, epileptic seizure, brain injury, encephalitis, stroke, and rapidly progressive dementia might result in false-positive results. On the other hand, when NSE testing is performed to assist in neurological diagnosis, NSE-secreting tumors can represent a source of false-positive results.
Neuron-specific enolase values can vary significantly between methods/assays. Serial follow-up should be performed with the same assay. If assays are changed, patients should have their baseline level reestablished.
This assay is an immunometric assay and can, in rare situations, be affected by false-low results in the presence of extremely high NSE concentrations ("hooking") or autoantibodies to NSE.
In rare cases, some individuals can develop antibodies to mouse or other animal antibodies (often referred to as human anti-mouse antibodies [HAMA] or heterophile antibodies), which may cause interference in some immunoassays. Caution should be used in interpretation of results, and the laboratory should be alerted if the result does not correlate with the clinical presentation.
Report Available
1 to 3 daysReject Due To
Gross hemolysis | Reject |
Gross lipemia | OK |
Gross icterus | Reject |
Hemolysis at any level | Reject |
Day(s) Performed
Monday through Saturday
Method Description
Neuron-specific enolase is measured in this homogeneous automated immunofluorescent assay on the BRAHMS Kryptor. The Kryptor uses TRACE (time resolved amplified cryptate emission) technology based on a nonradioactive transfer of energy. This transfer occurs between 2 fluorescent tracers: the donor (europium cryptate) and the acceptor (XL665). In the NSE assay, 2 monoclonal antibodies are labeled, 1 with europium cryptate and 1 with XL665. NSE is sandwiched between the 2 antibodies, bringing them into close proximity. When the antigen-antibody complex is excited with a nitrogen laser at 337 nm, some fluorescent energy is emitted at 620 nm, and the rest is transferred to XL665. This energy is then emitted as fluorescence at 665 nm. A ratio of the energy emitted at 665 nm to that emitted at 620 nm (internal reference) is calculated for each sample. Signal intensity is proportional to the number of antigen-antibody complexes formed and, therefore, to antigen concentration.(Unpublished Mayo method)
Method Name
Homogeneous Time-Resolved Fluorescence
Forms
If not ordering electronically, complete, print, and send an Oncology Test Request (T729) with the specimen.